![]() | OpenCvSharp.ML Namespace |
[Missing <summary> documentation for "N:OpenCvSharp.ML"]
Class | Description | |
---|---|---|
![]() | ANN_MLP |
Artificial Neural Networks - Multi-Layer Perceptrons.
|
![]() | Boost |
Boosted tree classifier derived from DTrees
|
![]() | DTrees |
Decision tree
|
![]() | KNearest |
K nearest neighbors classifier
|
![]() | LogisticRegression |
Implements Logistic Regression classifier.
|
![]() | NormalBayesClassifier |
Bayes classifier for normally distributed data
|
![]() | RTrees |
The class implements the random forest predictor.
|
![]() | StatModel |
Base class for statistical models in ML
|
![]() | SVM |
Support Vector Machines
|
![]() | SVMKernel | |
![]() | TrainData |
Structure | Description | |
---|---|---|
![]() | DTreesNode |
The class represents a decision tree node.
|
![]() | DTreesSplit |
The class represents split in a decision tree.
|
![]() | ParamGrid |
The structure represents the logarithmic grid range of statmodel parameters.
|
Enumeration | Description | |
---|---|---|
![]() | ANN_MLPActivationFunctions |
possible activation functions
|
![]() | ANN_MLPTrainFlags |
Train options
|
![]() | ANN_MLPTrainingMethods |
Available training methods
|
![]() | BoostTypes |
Boosting type.
Gentle AdaBoost and Real AdaBoost are often the preferable choices.
|
![]() | KNearestTypes |
Implementations of KNearest algorithm
|
![]() | LogisticRegressionMethods |
Training methods
|
![]() | LogisticRegressionRegKinds |
Regularization kinds
|
![]() | SampleTypes |
Sample types
|
![]() | StatModelFlags |
Predict options
|
![]() | SVMKernelTypes |
SVM kernel type
|
![]() | SVMParamTypes |
SVM params type
|
![]() | SVMTypes |
SVM type
|