OpenCvSharp.ML Namespace |
[Missing <summary> documentation for "N:OpenCvSharp.ML"]
Class | Description | |
---|---|---|
ANN_MLP |
Artificial Neural Networks - Multi-Layer Perceptrons.
| |
Boost |
Boosted tree classifier derived from DTrees
| |
DTrees |
Decision tree
| |
KNearest |
K nearest neighbors classifier
| |
LogisticRegression |
Implements Logistic Regression classifier.
| |
NormalBayesClassifier |
Bayes classifier for normally distributed data
| |
RTrees |
The class implements the random forest predictor.
| |
StatModel |
Base class for statistical models in ML
| |
SVM |
Support Vector Machines
| |
SVMKernel | ||
TrainData |
Structure | Description | |
---|---|---|
DTreesNode |
The class represents a decision tree node.
| |
DTreesSplit |
The class represents split in a decision tree.
| |
ParamGrid |
The structure represents the logarithmic grid range of statmodel parameters.
|
Enumeration | Description | |
---|---|---|
ANN_MLPActivationFunctions |
possible activation functions
| |
ANN_MLPTrainFlags |
Train options
| |
ANN_MLPTrainingMethods |
Available training methods
| |
BoostTypes |
Boosting type.
Gentle AdaBoost and Real AdaBoost are often the preferable choices.
| |
KNearestTypes |
Implementations of KNearest algorithm
| |
LogisticRegressionMethods |
Training methods
| |
LogisticRegressionRegKinds |
Regularization kinds
| |
SampleTypes |
Sample types
| |
StatModelFlags |
Predict options
| |
SVMKernelTypes |
SVM kernel type
| |
SVMParamTypes |
SVM params type
| |
SVMTypes |
SVM type
|