Class SVM
Support Vector Machines
Implements
Inherited Members
Namespace: OpenCvSharp.ML
Assembly: OpenCvSharp.dll
Syntax
public class SVM : StatModel, ICvPtrHolder
Constructors
| Improve this Doc View SourceSVM(IntPtr)
Creates instance by raw pointer cv::ml::SVM*
Declaration
protected SVM(IntPtr p)
Parameters
Type | Name | Description |
---|---|---|
IntPtr | p |
Properties
| Improve this Doc View SourceC
Parameter C of a %SVM optimization problem. For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0.
Declaration
public double C { get; set; }
Property Value
Type | Description |
---|---|
System.Double |
ClassWeights
Optional weights in the SVM::C_SVC problem, assigned to particular classes.
Declaration
public Mat ClassWeights { get; set; }
Property Value
Type | Description |
---|---|
Mat |
Remarks
They are multiplied by C so the parameter C of class i becomes classWeights(i) * C
.
Thus these weights affect the misclassification penalty for different classes.
The larger weight, the larger penalty on misclassification of data from the
corresponding class. Default value is empty Mat.
Coef0
Parameter coef0 of a kernel function. For SVM::POLY or SVM::SIGMOID. Default value is 0.
Declaration
public double Coef0 { get; set; }
Property Value
Type | Description |
---|---|
System.Double |
Degree
Parameter degree of a kernel function. For SVM::POLY. Default value is 0.
Declaration
public double Degree { get; set; }
Property Value
Type | Description |
---|---|
System.Double |
Gamma
Parameter gamma of a kernel function. For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1.
Declaration
public double Gamma { get; set; }
Property Value
Type | Description |
---|---|
System.Double |
KernelType
Type of a %SVM kernel. See SVM::KernelTypes. Default value is SVM::RBF.
Declaration
public SVM.KernelTypes KernelType { get; set; }
Property Value
Type | Description |
---|---|
SVM.KernelTypes |
Nu
Parameter nu of a %SVM optimization problem. For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0.
Declaration
public double Nu { get; set; }
Property Value
Type | Description |
---|---|
System.Double |
P
Parameter epsilon of a %SVM optimization problem. For SVM::EPS_SVR. Default value is 0.
Declaration
public double P { get; set; }
Property Value
Type | Description |
---|---|
System.Double |
TermCriteria
Termination criteria of the iterative SVM training procedure which solves a partial case of constrained quadratic optimization problem.
Declaration
public TermCriteria TermCriteria { get; set; }
Property Value
Type | Description |
---|---|
OpenCvSharp.TermCriteria |
Remarks
You can specify tolerance and/or the maximum number of iterations.
Default value is TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )
;
Type
Type of a %SVM formulation. Default value is SVM::C_SVC.
Declaration
public SVM.Types Type { get; set; }
Property Value
Type | Description |
---|---|
SVM.Types |
Methods
| Improve this Doc View SourceCreate()
Creates empty model. Use StatModel::Train to train the model. Since %SVM has several parameters, you may want to find the best parameters for your problem, it can be done with SVM::TrainAuto.
Declaration
public static SVM Create()
Returns
Type | Description |
---|---|
SVM |
DisposeManaged()
Releases managed resources
Declaration
protected override void DisposeManaged()
Overrides
| Improve this Doc View SourceDisposeUnmanaged()
Declaration
protected override void DisposeUnmanaged()
Overrides
| Improve this Doc View SourceGet()
Declaration
public override IntPtr Get()
Returns
Type | Description |
---|---|
IntPtr |
GetDecisionFunction(Int32, OutputArray, OutputArray)
Retrieves the decision function
Declaration
public double GetDecisionFunction(int i, OutputArray alpha, OutputArray svidx)
Parameters
Type | Name | Description |
---|---|---|
System.Int32 | i | i the index of the decision function. If the problem solved is regression, 1-class or 2-class classification, then there will be just one decision function and the index should always be 0. Otherwise, in the case of N-class classification, there will be N(N-1)/2 decision functions. |
OutputArray | alpha | alpha the optional output vector for weights, corresponding to different support vectors. In the case of linear %SVM all the alpha's will be 1's. |
OutputArray | svidx | the optional output vector of indices of support vectors within the matrix of support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear %SVM each decision function consists of a single "compressed" support vector. |
Returns
Type | Description |
---|---|
System.Double |
GetDefaultGrid(SVM.ParamTypes)
Generates a grid for SVM parameters.
Declaration
public static ParamGrid GetDefaultGrid(SVM.ParamTypes paramId)
Parameters
Type | Name | Description |
---|---|---|
SVM.ParamTypes | paramId | SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is generated for the parameter with this ID. |
Returns
Type | Description |
---|---|
ParamGrid |
GetSupportVectors()
Retrieves all the support vectors
Declaration
public Mat GetSupportVectors()
Returns
Type | Description |
---|---|
Mat |
Load(String)
Loads and creates a serialized svm from a file. Use SVM::save to serialize and store an SVM to disk. Load the SVM from this file again, by calling this function with the path to the file.
Declaration
public static SVM Load(string filePath)
Parameters
Type | Name | Description |
---|---|---|
System.String | filePath |
Returns
Type | Description |
---|---|
SVM |
LoadFromString(String)
Loads algorithm from a String.
Declaration
public static SVM LoadFromString(string strModel)
Parameters
Type | Name | Description |
---|---|---|
System.String | strModel | The string variable containing the model you want to load. |
Returns
Type | Description |
---|---|
SVM |
TrainAuto(TrainData, Int32, Nullable<ParamGrid>, Nullable<ParamGrid>, Nullable<ParamGrid>, Nullable<ParamGrid>, Nullable<ParamGrid>, Nullable<ParamGrid>, Boolean)
Trains an %SVM with optimal parameters.
Declaration
public bool TrainAuto(TrainData data, int kFold = 10, ParamGrid? cGrid = null, ParamGrid? gammaGrid = null, ParamGrid? pGrid = null, ParamGrid? nuGrid = null, ParamGrid? coeffGrid = null, ParamGrid? degreeGrid = null, bool balanced = false)
Parameters
Type | Name | Description |
---|---|---|
TrainData | data | the training data that can be constructed using TrainData::create or TrainData::loadFromCSV. |
System.Int32 | kFold | Cross-validation parameter. The training set is divided into kFold subsets. One subset is used to test the model, the others form the train set. So, the %SVM algorithm is executed kFold times. |
System.Nullable<ParamGrid> | cGrid | grid for C |
System.Nullable<ParamGrid> | gammaGrid | grid for gamma |
System.Nullable<ParamGrid> | pGrid | grid for p |
System.Nullable<ParamGrid> | nuGrid | grid for nu |
System.Nullable<ParamGrid> | coeffGrid | grid for coeff |
System.Nullable<ParamGrid> | degreeGrid | grid for degree |
System.Boolean | balanced | If true and the problem is 2-class classification then the method creates more balanced cross-validation subsets that is proportions between classes in subsets are close to such proportion in the whole train dataset. |
Returns
Type | Description |
---|---|
System.Boolean |