Class IntelligentScissorsMB
Intelligent Scissors image segmentation
This class is used to find the path (contour) between two points which can be used for image segmentation.
Usage example: @snippet snippets/imgproc_segmentation.cpp usage_example_intelligent_scissors
Reference: Intelligent Scissors for Image Composition http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf algorithm designed by Eric N. Mortensen and William A. Barrett, Brigham Young University @cite Mortensen95intelligentscissors
Implements
Inherited Members
Namespace: OpenCvSharp.Segmentation
Assembly: OpenCvSharp.dll
Syntax
public class IntelligentScissorsMB : DisposableCvObject, ICvPtrHolder
Constructors
| Improve this Doc View SourceIntelligentScissorsMB()
Constructor
Declaration
public IntelligentScissorsMB()
Methods
| Improve this Doc View SourceApplyImage(InputArray)
Specify input image and extract image features
Declaration
public IntelligentScissorsMB ApplyImage(InputArray image)
Parameters
Type | Name | Description |
---|---|---|
InputArray | image | input image. Type is #CV_8UC1 / #CV_8UC3 |
Returns
Type | Description |
---|---|
IntelligentScissorsMB |
ApplyImageFeatures(InputArray, InputArray, InputArray, InputArray)
Specify custom features of imput image Customized advanced variant of applyImage() call.
Declaration
public IntelligentScissorsMB ApplyImageFeatures(InputArray nonEdge, InputArray gradientDirection, InputArray gradientMagnitude, InputArray image = null)
Parameters
Type | Name | Description |
---|---|---|
InputArray | nonEdge | Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are |
InputArray | gradientDirection | Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: |
InputArray | gradientMagnitude | Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range |
InputArray | image | Optional parameter. Must be specified if subset of features is specified (non-specified features are calculated internally) |
Returns
Type | Description |
---|---|
IntelligentScissorsMB |
BuildMap(Point)
Prepares a map of optimal paths for the given source point on the image Note: applyImage() / applyImageFeatures() must be called before this call
Declaration
public void BuildMap(Point sourcePt)
Parameters
Type | Name | Description |
---|---|---|
OpenCvSharp.Point | sourcePt | The source point used to find the paths |
DisposeUnmanaged()
Releases unmanaged resources
Declaration
protected override void DisposeUnmanaged()
Overrides
| Improve this Doc View SourceGetContour(Point, OutputArray, Boolean)
Extracts optimal contour for the given target point on the image Note: buildMap() must be called before this call
Declaration
public void GetContour(Point targetPt, OutputArray contour, bool backward = false)
Parameters
Type | Name | Description |
---|---|---|
OpenCvSharp.Point | targetPt | The target point |
OutputArray | contour | contour The list of pixels which contains optimal path between the source and the target points of the image.
Type is CV_32SC2 (compatible with |
System.Boolean | backward | Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point) |
SetEdgeFeatureCannyParameters(Double, Double, Int32, Boolean)
Switch edge feature extractor to use Canny edge detector Note: "Laplacian Zero-Crossing" feature extractor is used by default (following to original article)
Declaration
public IntelligentScissorsMB SetEdgeFeatureCannyParameters(double threshold1, double threshold2, int apertureSize = 3, bool l2gradient = false)
Parameters
Type | Name | Description |
---|---|---|
System.Double | threshold1 | |
System.Double | threshold2 | |
System.Int32 | apertureSize | |
System.Boolean | l2gradient |
Returns
Type | Description |
---|---|
IntelligentScissorsMB |
SetEdgeFeatureZeroCrossingParameters(Single)
Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters
This feature extractor is used by default according to article.
Implementation has additional filtering for regions with low-amplitude noise. This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16).
@note Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first).
@note Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters().
Declaration
public IntelligentScissorsMB SetEdgeFeatureZeroCrossingParameters(float gradientMagnitudeMinValue = 0F)
Parameters
Type | Name | Description |
---|---|---|
System.Single | gradientMagnitudeMinValue | Minimal gradient magnitude value for edge pixels (default: 0, check is disabled) |
Returns
Type | Description |
---|---|
IntelligentScissorsMB |
SetGradientMagnitudeMaxLimit(Single)
Specify gradient magnitude max value threshold
Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article).
Otherwize pixels with gradient magnitude >= threshold
have zero cost.
@note Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos).
Declaration
public IntelligentScissorsMB SetGradientMagnitudeMaxLimit(float gradientMagnitudeThresholdMax = 0F)
Parameters
Type | Name | Description |
---|---|---|
System.Single | gradientMagnitudeThresholdMax | Specify gradient magnitude max value threshold (default: 0, disabled) |
Returns
Type | Description |
---|---|
IntelligentScissorsMB |
SetWeights(Single, Single, Single)
Specify weights of feature functions
Consider keeping weights normalized (sum of weights equals to 1.0) Discrete dynamic programming (DP) goal is minimization of costs between pixels.
Declaration
public IntelligentScissorsMB SetWeights(float weightNonEdge, float weightGradientDirection, float weightGradientMagnitude)
Parameters
Type | Name | Description |
---|---|---|
System.Single | weightNonEdge | Specify cost of non-edge pixels (default: 0.43f) |
System.Single | weightGradientDirection | Specify cost of gradient direction function (default: 0.43f) |
System.Single | weightGradientMagnitude | Specify cost of gradient magnitude function (default: 0.14f) |
Returns
Type | Description |
---|---|
IntelligentScissorsMB |