Class LogisticRegression
- Namespace
- OpenCvSharp.ML
- Assembly
- OpenCvSharp.dll
Implements Logistic Regression classifier.
public class LogisticRegression : StatModel, IDisposable, ICvPtrHolder
- Inheritance
-
LogisticRegression
- Implements
- Inherited Members
Constructors
LogisticRegression(nint)
Creates instance by raw pointer cv::ml::LogisticRegression*
protected LogisticRegression(nint p)
Parameters
pnint
Properties
Iterations
Number of iterations.
public int Iterations { get; set; }
Property Value
LearningRate
Learning rate
public double LearningRate { get; set; }
Property Value
MiniBatchSize
Specifies the number of training samples taken in each step of Mini-Batch Gradient. Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples.
public int MiniBatchSize { get; set; }
Property Value
Regularization
Kind of regularization to be applied. See LogisticRegression::RegKinds.
public LogisticRegression.RegKinds Regularization { get; set; }
Property Value
TermCriteria
Termination criteria of the training algorithm.
public TermCriteria TermCriteria { get; set; }
Property Value
TrainMethod
Kind of training method used. See LogisticRegression::Methods.
public LogisticRegression.Methods TrainMethod { get; set; }
Property Value
Methods
Create()
Creates the empty model.
public static LogisticRegression Create()
Returns
DisposeManaged()
Releases managed resources
protected override void DisposeManaged()
GetLearntThetas()
This function returns the trained parameters arranged across rows. For a two class classification problem, it returns a row matrix. It returns learnt parameters of the Logistic Regression as a matrix of type CV_32F.
public Mat GetLearntThetas()
Returns
Load(string)
Loads and creates a serialized model from a file.
public static LogisticRegression Load(string filePath)
Parameters
filePathstring
Returns
LoadFromString(string)
Loads algorithm from a String.
public static LogisticRegression LoadFromString(string strModel)
Parameters
strModelstringhe string variable containing the model you want to load.
Returns
Predict(InputArray, OutputArray?, int)
Predicts responses for input samples and returns a float type.
public float Predict(InputArray samples, OutputArray? results = null, int flags = 0)
Parameters
samplesInputArrayThe input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.
resultsOutputArrayPredicted labels as a column matrix of type CV_32S.
flagsintNot used.