Class DTrees
- Namespace
- OpenCvSharp.ML
- Assembly
- OpenCvSharp.dll
Decision tree
public class DTrees : StatModel, IDisposable, ICvPtrHolder
- Inheritance
-
DTrees
- Implements
- Derived
- Inherited Members
Constructors
DTrees()
protected DTrees()
DTrees(nint)
Creates instance by raw pointer cv::ml::SVM*
protected DTrees(nint p)
Parameters
pnint
Properties
CVFolds
If CVFolds > 1 then algorithms prunes the built decision tree using K-fold cross-validation procedure where K is equal to CVFolds. Default value is 10.
public int CVFolds { get; set; }
Property Value
MaxCategories
Cluster possible values of a categorical variable into K < =maxCategories clusters to find a suboptimal split.
public int MaxCategories { get; set; }
Property Value
MaxDepth
The maximum possible depth of the tree.
public int MaxDepth { get; set; }
Property Value
MinSampleCount
If the number of samples in a node is less than this parameter then the node will not be split. Default value is 10.
public int MinSampleCount { get; set; }
Property Value
Priors
The array of a priori class probabilities, sorted by the class label value.
public Mat Priors { get; set; }
Property Value
RegressionAccuracy
Termination criteria for regression trees. If all absolute differences between an estimated value in a node and values of train samples in this node are less than this parameter then the node will not be split further. Default value is 0.01f.
public float RegressionAccuracy { get; set; }
Property Value
TruncatePrunedTree
If true then pruned branches are physically removed from the tree. Otherwise they are retained and it is possible to get results from the original unpruned (or pruned less aggressively) tree. Default value is true.
public bool TruncatePrunedTree { get; set; }
Property Value
Use1SERule
If true then a pruning will be harsher. This will make a tree more compact and more resistant to the training data noise but a bit less accurate. Default value is true.
public bool Use1SERule { get; set; }
Property Value
UseSurrogates
If true then surrogate splits will be built. These splits allow to work with missing data and compute variable importance correctly. Default value is false.
public bool UseSurrogates { get; set; }
Property Value
Methods
Create()
Creates the empty model.
public static DTrees Create()
Returns
DisposeManaged()
Releases managed resources
protected override void DisposeManaged()
GetNodes()
Returns all the nodes. all the node indices are indices in the returned vector
public DTrees.Node[] GetNodes()
Returns
- Node[]
GetRoots()
Returns indices of root nodes
public int[] GetRoots()
Returns
- int[]
GetSplits()
Returns all the splits. all the split indices are indices in the returned vector
public DTrees.Split[] GetSplits()
Returns
- Split[]
GetSubsets()
Returns all the bitsets for categorical splits. Split::subsetOfs is an offset in the returned vector
public int[] GetSubsets()
Returns
- int[]
Load(string)
Loads and creates a serialized model from a file.
public static DTrees Load(string filePath)
Parameters
filePathstring
Returns
LoadFromString(string)
Loads algorithm from a String.
public static DTrees LoadFromString(string strModel)
Parameters
strModelstringhe string variable containing the model you want to load.